

Konwerter LAN / RS-232

INSTRUKCJA OBSŁUGI

Wersja 1.1

CE

Spis treści

1.	Opis ogólny	3
<u>2.</u>	Rozmieszczenie wyprowadzeń	<u>3</u>
<u>3.</u>	Sygnalizacja działania.	4
<u>4</u> .	Konfiguracja za pomoca przegladarki WWW	4
5.	Konfiguracja przez port szeregowy RS-232	7
<u>6.</u>	Połączenie z dedykowanymi aplikacjami (bramka Telnet)	8
7.	Komunikacja w protokole SNMP.	8
8.	Podgląd wyników pomiarów przez stronę WWW1	0
<u>9</u> .	Domyślne ustawienia urządzenia1	1

PROGSTAR Zakład Elektroniki, Automatyki i Informatyki

ul. Lipowa 12 27-200 Starachowice tel./fax (41) 274 86 52 e-mail: progstar@progstar.com.pl http://www.progstar.com.pl

- Chociaż podjęto wszelkie działania, aby informacje zawarte w tej instrukcji były dokładne i kompletne, to jednocześnie ani producent ani dostawca urządzenia nie przyjmują odpowiedzialności za pominięcia i błędy.
- Producent i dostawca urządzenia nie przyjmują żadnej odpowiedzialności za szkody wynikłe z nieprawidłowego działania lub uszkodzeń urządzenia, jego oprogramowania bądź akcesorii.
- Firma PROGSTAR zastrzega sobie prawo zmiany specyfikacji sprzętu i oprogramowania opisanego w instrukcji w dowolnym czasie i bez uprzedzenia.

Copyright © 2014-2015 PROGSTAR Wszelkie prawa zastrzeżone

Starachowice, luty 2015

1. Opis ogólny

Konwerter umożliwia przyłączenie urządzenia z interfejsem RS-232 (np. modułu SMS-4, MPS-1, MPS-Logger, rejestratora Termo-Alarm, Termo-Track lub systemu Tele-Clima) do sieci Ethernet i uzyskanie zdalnego dostępu przez sieć LAN.

Cechy urządzenia:

- Zgodność ze standardem Ethernet 10 Mbit/s i 100 Mbit/s (10BASE-T, 100BASE-TX)
- Automatyczne rozpoznawanie kierunku transmisji (Auto MDI / MDIX)
- Interfejs do urządzeń z komunikacją szeregową (port RS-232, 9600 bit/s lub 115200 bit/s, 8N1 / 7N2)
- Udostępnianie portu RS-232 urządzenia przez sieć LAN (bramka Telnet)
- Udostępnianie wyników pomiarów z urządzenia w protokole SNMP
- Prezentacja wyników pomiarów na stronie WWW (wbudowany Webserver)
- Izolacja galwaniczna obwodów RS-232 od linii Ethernet
- Łatwa konfiguracja przez przeglądarkę WWW lub przez port RS-232
- Szeroki zakres napięć zasilania (8...30V DC, max. 90 mA)

2. Rozmieszczenie wyprowadzeń

Złącze zasilania (8 ... 30 V prądu stałego)

Interfejs RS-232 wyprowadzony jest w standardowym (DTE) męskim złączu DB-9, zgodnie z tab. 1.

Tab. 1.	Funkcje v	vyprowadzeń	portu	RS-232
---------	-----------	-------------	-------	--------

Nr zacisku Sygnał		Kierunek
2	RXD	Wejście
3	TXD	Wyjście
5	GND	Masa

Połączenie RS-232 z modułem SMS-4, rejestratorem Termo-Alarm lub systemem Tele-Clima może być wykonane bezpośrednio za pomocą kabla serwisowego (kabel typu *Null Modem*, tzn. z przekrosowaniem sygnałów RXD / TXD).

Interfejs Ethernet wyprowadzony jest w standardowym gnieździe RJ-45, zgodnie z tab. 2.

ab.	2.	Funkcje	wypi	row	adzer	i port	u Ethe	ernet

<u> </u>		· _ ·		
Nr zacisku RJ-45	1	2	3	6
Sygnał	Tx+	Tx-	Rx+	Rx-

Numerację zacisków we wtyku RJ-45 przedstawiono na rys. 1. Do połączenia z koncentratorem sieciowym lub z komputerem PC należy zastosować typowy kabel sieciowy (*patchcord*).

Rys. 1. Numeracja wyprowadzeń wtyku RJ-45

3. Sygnalizacja działania

Działanie konwertera sygnalizowane jest trzema diodami LED umieszczonymi na froncie obudowy:

- PWR (zielona) sygnalizuje obecność napięcia zasilania,
- LINK (żółta) sygnalizuje nawiązanie połączenia z siecią LAN,
- **COM** (czerwona) sygnalizuje ciągłym świeceniem brak komunikacji przez port RS-232, a miganiem nawiązanie połączenia z bramką Telnet (patrz rozdz. 6).

4. Konfiguracja za pomocą przeglądarki WWW

Konfiguracja konwertera może być wykonana za pomocą dowolnej przeglądarki internetowej uruchomionym na komputerze podłączonym do wspólnej sieci LAN.

Początkowo urządzenie ma przypisany adres IP: 192.168.2.1 z maską sieciową 255.255.255.0. Aby możliwe było połączenie z konwerterem, *połączenie sieciowe* w konfiguracji komputera musi mieć ustawiony adres IP z tego samego segmentu sieci (np. 192.168.2.100).

W celu edycji konfiguracji należy wykonać następujące czynności:

- połączyć konwerter z komputerem PC (za pośrednictwem koncentratora sieciowego lub bezpośrednio)
- włączyć zasilanie konwertera powinny zaświecić się kontrolki: PWR, LINK, COM
- na komputerze PC uruchomić przeglądarkę internetową
- w polu URL przeglądarki wpisać adres konwertera (np. 192.168.2.1, patrz rys. 2)

Rys. 2. Wprowadzanie adresu IP konwertera w przeglądarce WWW

• zalogować się na stronie autoryzacji przysłanej z urządzenia (patrz rys. 3); domyślne parametry logowania: Użytkownik = *admin*, Hasło = *system*:

Autoryzacja				
Adres IP	192.168.2.1			
Użytkownik:	admin			
Hasło:	•••••			
ОК				

<< Wyniki pomiarów >>

Rys. 3. Strona logowania do edycji ustawień konwertera

Uwaga! Użytkownik zostanie automatycznie wylogowany po 10-minutowym braku aktywności.

• po zalogowaniu, w przeglądarce otworzy się strona WWW pokazana na rys. 4, na której możliwa jest edycja ustawień sieciowych konwertera (np. adresu IP) a także ustawienie trybu pracy portu RS-232:

Administracja Ustawienia LAN Ustawienia SNMP Status systemu Zmiana hasła Ustawienia fabryczne <u>RESET urządzenia</u> <u>WYLOGUJ</u> <u>Wyniki pomiarów</u> Pobierz plik MIB

Połączenie TELNET

Ustawienia sieci LAN i konwertera RS-232

PARAMETR	WARTOŚ
Nazwa urządzenia	LAN-RS
Adres IP urządzenia	192.168.2.1
Maska podsieci	255.255.255.0
Adres IP bramy sieciowej	192.168.2.250
Numer portu TCP bramki Telnet/RS-232 (default: 23)	23
Tryb pracy portu RS-232 (0=SMS-4, 1=MPS-1)	0
Typ obsługiwanych czujników (tylko dla MPS-1)	0

Rys. 4. Strona edycji ustawień sieci LAN i portu RS-232

Ostatnie dwie pozycje wymagają bliższego wyjaśnienia. W polu **Tryb pracy portu RS-232** ustala się sposób komunikacji z urządzeniem oraz parametry transmisji przez port szeregowy, zgodnie z wartościami z tab. 3.

Wartość	Obsługiwane urządzenie	Parametry transmisji RS-232
0 Moduł SMS-4		9600 bps, 8N1
1	Moduł MPS-1 / Logger	9600 bps, 7N2
2	Moduł SMS-4	115200 bps, 8N1
3	Moduł MPS-1 / Logger	115200 bps, 8N1

Tab. 3. Wybór trybu pracy portu RS-232

Ustawiony tryb pracy musi być zgodny z aktualną konfiguracją urządzenia dołączonego przez RS-232. Najbardziej typowa wartość to 0 (dla modułu SMS-4) lub 1 (dla modułu MPS-1).

Wartość wpisana w polu **Typ obsługiwanych czujników** określa sposób przeliczania i prezentacji wyników pomiarów z linii L1...L16 modułu MPS-1 i ma znaczenie tylko w trybach pracy 1,3 portu RS-232. Konfiguracja określana jest oddzielnie dla każdej grupy czterech linii pomiarowych, za pomocą dwóch bitów (00=pomiar napięcia, 01=pom. temperatury, 10=pom. wilgotności). Przykładowe wartości zestawiono w tab.4:

Tab. 4. Określenie typu czujników dołączonych do linii L1...L16 modułu MPS-1

Wartość	ć Typ czujników dołączonych do poszczególnych linii pomiarowych	
0	L1L16 : pomiar napięcia (U)	
1	L1L4 : pomiar temperatury (T), pozostałe: pomiar napięcia (U)	
5	L1L8 : pomiar temperatury (T), pozostałe: pomiar napięcia (U)	
25	L1L12 : pomiar temperatury (T), pozostałe: pomiar napięcia (U)	
85	L1L16 : pomiar temperatury (T)	
149	L1L12 : pomiar temperatury (T), pozostałe: pomiar wilgotności (RH)	
165	L1L8 : pomiar temperatury (T), pozostałe: pomiar wilgotności (RH)	

W każdym oknie ustawień wprowadzone zmiany zatwierdza się, klikając na przycisku Ustaw.

Po lewej stronie ekranu znajdują się odnośniki do ustawień poszczególnych funkcji Konwertera:

• Ustawienia LAN – zmiana adresu IP, parametrów dostępu do sieci i portu RS-232 (patrz rys. 4),

UWAGA!

Po zmianie adresu IP lub innych parametrów sieci bądź portu RS-232 konieczne jest wykonanie restartu urządzenia i ponowne zalogowanie się, a niekiedy również zmiana ustawień *Połączenia sieciowego* w dołączonym komputerze PC.

• Ustawienia SNMP – edycja ustawień protokołu SNMP (patrz rys. 5) wraz z odnośnikiem do pliku MIB z konfiguracją dostępu przez SNMP (patrz rozdz. 6):

Ustawienia agenta SNMP

PARAMETR	WARTOŚĆ		
Nazwa społeczności (COMMUNITY)	sms4		
Ustaw			

Pobierz plik MIB dla tego urządzenia

Rys. 5. Strona ustawień protokołu SNMP

• **Status systemu** – wyświetlenie informacji o adresie MAC, wersji oprogramowania i innych parametrach urządzenia (patrz rys. 6); informacje na tej stronie są odświeżane co 30 sekund:

Status systemu (LAN-RS)

Wersja aplikacji	V1.1 (2015-02-03)
Wersja OS	EM500W-3.33.00
Adres MAC	00.24.77.51.9A.E6
Adres IP agenta / użytkownika HTTP	192.168.2.73
Wolne zasoby RAM	24 / 46
Czas pracy	37091 [x 0,5s]
Połączenie Telnet	OFF
Watchdog timer MSR / liczba błędów	1/2

Rys. 6. Przykładowy widok strony statusu

• Zmiana hasła – zmiana nazwy użytkownika i hasła do logowania przez stronę WWW (rys. 7):

Konfiguracja dostępu

PARAMETR	WARTOŚĆ
Nowa nazwa użytkownika	admin (max: 15 zn.)
Stare hasło	•••••
Nowe hasło	(max: 15 zn.)
Nowe hasło (potwierdzenie)	(max: 15 zn.)
Ustaw	

Rys. 7. Zmiana parametrów autoryzacji WWW

• Ustawienia fabryczne – przywrócenie ustawień fabrycznych urządzenia (patrz rozdz. 9):

Rys. 8. Przywracanie ustawień fabrycznych z poziomu przeglądarki WWW

• **RESET urządzenia** – wykonanie restartu oprogramowania (rys. 9):

Rys. 9. Restartowanie konwertera po wprowadzeniu nowych ustawień

- Wyniki pomiarów podgląd on-line wyników pomiarów z dołączonego modułu SMS-4 (p. rozdz. 8),
- Pobierz plik MIB link do pobrania pliku MIB z konfiguracją protokołu SNMP (patrz rozdz. 7),
- Połączenie Telnet link do nawiązania połączenia z bramką Telnet (patrz rozdz. 6).

Uwaga! skuteczność linku do połączenia Telnet zależy od konfiguracji systemu operacyjnego na komputerze PC (typ przeglądarki oraz ustawiony domyślny klient protokołu Telnet). Jako klienta protokołu Telnet polecić można program *Putty* (<u>www.putty.org</u>).

5. Konfiguracja przez port szeregowy RS-232

W przypadku braku znajomości adresu IP urządzenia, możliwe jest wprowadzenie zmian w jego konfiguracji przez połączenie RS-232 z terminalem uruchomionym na komputerze PC. Połączenie powinno być wykonane za pomocą kabla RS-232 typu *Null Modem*, tzn. z przekrosowaniem linii TXD / RXD (jest to typowy przewód serwisowy modułu SMS-4, rejestratora Termo-Alarm oraz systemu Tele-Clima). Terminal RS-232 dla systemu Windows można pobrać np. ze strony internetowej: <u>http://www.progstar.com.pl/download/terminal.zip</u>. Na rys. 10 pokazano przykładowy wygląd okna ustawień terminala.

alian							
Connect COM Port Baud rate Disconnect • COM1 • COM2 • COM2 • COM3 • Disconnect • 600 • 9600 • 9600 • 57600 • 1200 • 14400 • 57600 • 115200 • 115200 • 2400 • 38400 • 256000	Data bits Parity Stop Bits Handshaking 5 • none • none • none 6 • odd • 1 • RTS/CTS 7 • wen • 1.5 • X0N/X0FF 8 • space • 2 • RTS/CTS + X0N/X0FF						
Settings ☐ Auto Dis/Connect Set font I Time CR=LF RxBox Clear 27 ASCII table							
Beceive							
CLEAR Reset Counter 13 Counter = 0 C HEX	g StartLog StopLog						

Rys. 10. Przykładowy wygląd terminala RS-232

Po otwarciu portu COM w terminalu (prędkość: 9600 bps, 8 bitów danych, brak bitu parzystości, 1 bit STOP, brak kontroli przepływu – patrz rys. 10, ewentualnie 9600 bps 7N2 lub 115200 bps 8N1 – przy innych trybach pracy portu RS-232 w Konwerterze – patrz tab. 3), komunikacja z urządzeniem odbywa się za pomocą komend tekstowych. **Przy wprowadzaniu komend rozpoznawana jest wielkość liter**. Każda komenda musi być zakończona znakiem nowej linii (Enter), przy czym w każdej linii może być przesłana tylko jedna komenda. Zbiór komend konfiguracyjnych zestawiono w tab. 5.

Komenda	Opis	Przykład
SET?	Zapytanie o zestaw aktualnych ustawień urządzenia	
VER?	Zapytanie o numer wersji oprogramowania Firmware	
IPA=	Ustawienie adresu IP	IPA=192.168.2.1
MASK=	Ustawienie maski sieciowej	MASK=255.255.255.0
GATE=	Ustawienie adresu IP bramy	GATE=192.168.2.99
USER=	Wprowadzenie nowej nazwy użytkownika do logowania przez WWW	USER=admin
PASW=	Wprowadzenie nowego hasła do logowania przez WWW	PASW=system
PTELN=	Ustawienie numeru portu TCP dla połączenia Telnet	PTELN=23
CSNMP=	Ustawienie nazwy społeczności (community) dla protokołu SNMP	CSNMP=public
UID=	Wprowadzenie identyfikatora (nazwy) urządzenia	UID=Gate-2
INIT!	Wymuszenie restartu oprogramowania	
SMOD=	Tryb pracy portu RS-232 (patrz tab.3)	SMOD=0
SCFG=	Typ czujników dołączonych do wejść modułu MPS-1 (patrz tab. 4)	SCFG=85
Default_Settings!	Przywrócenie ustawień fabrycznych (patrz rozdz. 9)	

Tab. 5. Zestawienie komend konfiguracyjnych dostępnych przez port RS-232

Urządzenie potwierdza odebranie komendy odsyłając zwrotnie jej argument (np. nowy adres IP w przypadku komendy IPA=). Odebranie nieznanej komendy nie jest w żaden sposób sygnalizowane.

6. Połączenie z dedykowanymi aplikacjami (bramka Telnet)

W trybie połączenia Telnet, wszystkie dane odbierane z portu RS-232 są w przezroczysty sposób przesyłane przez otwarte połączenie TCP/IP i na odwrót – wszystkie dane odebrane z połączenia TCP/IP wysyłane są przez port RS-232. Bramka Telnet umożliwia zdalny dostęp do urządzenia (modułu SMS-4, rejestratora Termo-Alarm lub systemu Tele-Clima) przez sieć komputerową LAN. W dedykowanym oprogramowaniu do komunikacji z urządzeniem zamiast numeru portu COM wystarczy wprowadzić adres IP konwertera i numer portu TCP przewidziany do komunikacji Telnet, zgodnie z konfiguracją Konwertera.

7. Komunikacja w protokole SNMP

Urządzenie udostępniania wyniki pomiarów oraz status odczytany z modułu SMS-4 jako rejestry OID dostępne do odczytu w protokole SNMP. Parametry zaimplementowanego agenta SNMP są następujące:

- obsługiwana wersja protokołu: SNMP v1
- dostepne procedury: GetRequest, GetNextRequest (SnmpWalk)
- tylko odczyt wartości rejestrów (tryb Read-Only)
- komunikacja przez standardowy numer portu UDP (161)
- domyślna nazwa społeczności (community): sms4
- przesyłanie max. trzech zmiennych (varbind) w jednym datagramie UDP
- możliwość nawiązania komunikacji w trybie *broadcast* (same jedynki w końcówce adresu IP odbiorcy)
- adres bazowy drzewa obiektów OID: 1.3.6.1.4.1.44065.1 (iso.org.dod.internet.private.enterprises.progstar.sms4)

Format i strukturę obiektów OID udostępnianych przez urządzenie udokumentowano w pliku progstar.mib. Plik ten jest dostępny do pobrania z urządzenia za pomocą przeglądarki WWW pod adresem: <u>http://192.168.2.1/progstar.mib</u> (adres IP należy zastąpić zgodnie z bieżącą konfiguracją urządzenia). W celu odczytania pliku MIB nie jest wymagana autoryzacja.

Za pomocą procedury SnmpWalk możliwe jest odczytanie całego drzewa rejestrów OID z urządzenia. W tym celu należy wywołać komendę SnmpWalk z parametrem 1 jako początkiem przeszukiwania drzewa OID.

Plik MIB umożliwia dostęp do rejestrów za pomocą skróconych adresów w formie tekstowej, np. PROGSTAR-MIB::13s. W tab. 6 zestawiono wszystkie rejestry dostępne z poziomu protokołu SNMP.

Adres OID	Nazwa	Opis	Przykładowa wartość
1.3.6.1.4.1.44065.1.1.*	msr-str	Wyniki pomiarów w postaci tekstowej (z jednostkami)	
1.3.6.1.4.1.44065.1.1.1	lls	Wynik pomiaru z linii L1 (łańcuch znaków)	23.1'C
1.3.6.1.4.1.44065.1.1.8	18s	Wynik pomiaru z linii L8 (łańcuch znaków)	4.092V
1.3.6.1.4.1.44065.1.2.*	msr-int	Wyniki pom. jako liczba całkowita (bez części ułamkowej)	
1.3.6.1.4.1.44065.1.2.1	11i	Wynik pomiaru z linii L1 (liczba całkowita)	23
1.3.6.1.4.1.44065.1.2.8	18i	Wynik pomiaru z linii L8 (liczba całkowita)	4
1.3.6.1.4.1.44065.1.3.*	msr-no	Progowane, dwustanowe wyniki pomiarów (ON = stan L)	
1.3.6.1.4.1.44065.1.3.1	llno	Wynik pomiaru z linii L1 (ON / OFF)	ON
1.3.6.1.4.1.44065.1.3.8	18no	Wynik pomiaru z linii L8 (ON / OFF)	OFF
1.3.6.1.4.1.44065.1.4.*	msr-nc	Progowane, dwustanowe wyniki pomiarów (ON = stan H)	
1.3.6.1.4.1.44065.1.4.1	llnc	Wynik pomiaru z linii L1 (ON / OFF)	OFF
1.3.6.1.4.1.44065.1.4.8	18nc	Wynik pomiaru z linii L1 (ON / OFF)	ON
1.3.6.1.4.1.44065.1.5.*	status	Rejestry statusu, flagi, rejestry informacyjne urządzenia	
1.3.6.1.4.1.44065.1.5.1	linLO	Maska bitowa stanu wejść L1L8 SMS-4 w stanie niskim	255
1.3.6.1.4.1.44065.1.5.2	linHI	Maska bitowa stanu wejść L1L8 SMS-4 w stanie wysokim	0
1.3.6.1.4.1.44065.1.5.3	alarm	Flaga ON/OFF sygnalizująca stan alarmowy SMS-4	OFF
1.3.6.1.4.1.44065.1.5.4	outs	Maska bitowa stanu wyjść O1O6 modułu SMS-4	0
1.3.6.1.4.1.44065.1.5.5	rssi	Poziom sygnału sieci GSM (0 31)	23
1.3.6.1.4.1.44065.1.5.6	gsmReg	Flaga ON/OFF sygnalizująca rejestrację w sieci GSM	ON
1.3.6.1.4.1.44065.1.5.7	smsCnt	Liczba wiadomości SMS wysłanych z SMS-4	45
1.3.6.1.4.1.44065.1.5.8	rptTim	Czas [min] od wysłania ost. raportu z modułu SMS-4	19
1.3.6.1.4.1.44065.1.5.9	watchMode	Flaga ON/OFF sygnalizująca tryb czuwania SMS-4	OFF
1.3.6.1.4.1.44065.1.5.10	emailCnt	Liczba wiadomości e-mail wysłanych z SMS-4	0
1.3.6.1.4.1.44065.1.5.11	msrTim	Czas [s] od ost. odczytania wyników pomiarów z SMS-4	4
1.3.6.1.4.1.44065.1.5.12	telnetPort	Numer portu TCP dla połączenia Telnet	23
1.3.6.1.4.1.44065.1.5.13	telnetCon	Flaga ON/OFF sygnalizująca nawiązane połączenie Telnet	OFF
1.3.6.1.4.1.44065.1.5.14	macAddr	Adres MAC urządzenia	00.24.77.12.34.56
1.3.6.1.4.1.44065.1.5.15	ipAddr	Adres IP urządzenia	192.168.2.1
1.3.6.1.4.1.44065.1.5.16	firmVer	Numer wersji i data kompilacji Firmware	V1.0 (2014-10-16)
1.3.6.1.4.1.44065.1.5.17	devName	Nazwa (identyfikator) urządzenia	LAN-RS

Tab. 6. Zestawienie rejestrów dostępnych przez protokół SNMP

Uwaga!

Po upływie 255 sekund od ostatniego odczytu pomiarów z mod. SMS-4 (rejestr PROGSTAR-MIB::msrTim) wszystkie zapamiętane wartości ulegają przedawnieniu i są zastępowane zerami lub znakami zapytania: "???".

8. Podgląd wyników pomiarów przez stronę WWW

Urządzenie udostępniania aktualne wyniki pomiarów odczytane z modułu SMS-4 oraz status modułu za pomocą dedykowanej strony WWW o adresie: <u>http://192.168.2.1/msr.html</u> (adres IP należy zastąpić zgodnie z bieżącą konfiguracją). Dostęp do tej strony nie wymaga logowania, a informacje w niej zawarte są odświeżane co 20 sekund. Poniżej przedstawiono przykładowy wydruk z przeglądarki internetowej:

Aktualne wyniki pomiarów								
Ll	L2 L3 L4		L5	L6	L7	L8		
25.0'C	47%	0.000V	4.092V	4.092V	4.092V	4.092V	4.092V	
OK	OK	(L)	(H)	(H)	(H)	(H)	(H)	
Aktual	Aktualny status systemu							
Czas o	Czas od ost. odczytu pomiarów 3 s							
Stan w	Stan wyjść O1O6 000				001			
Połącze	Połączenie TELNET			ON	ON			
Stan al	Stan alarmowy			ON	ON			
Godzin	Godzina czuwania			OFF	OFF			
Poziom	Poziom sygnału GSM			18	18			
Rejest	Rejestracja w sieci GSM			ON				
Liczba	Liczba wysłanych SMS			7				
Liczba	Liczba wysłanych e-mail			0				
Czas od wysłania ost. raportu				u 106 i	m			

Rys. 11. Przykładowy widok strony WWW z wynikami pomiarów

Uwaga!

Po upływie 255 sekund od ostatniego odczytu pomiarów z modułu SMS-4 (pierwszy wiersz w tabeli **Aktualny status systemu**) zapamiętane wyniki pomiarów ulegają przedawnieniu i są zerowane lub zastępowane znakami zapytania: "???".

9. Domyślne ustawienia urządzenia

W przypadku zaistnienia takiej potrzeby, w urządzeniu można przywrócić ustawienia fabryczne na trzy sposoby:

- przez stronę WWW odnośnik Ustawienia fabryczne w menu głównym (patrz rozdz. 4),
- przez port RS-232 za pomocą specjalnej komendy (patrz rozdz. 5),
- sprzętowo za pomocą zworki (jest to tryb awaryjny, należy włączyć zasilanie z założoną zworką znajdującą się wewnątrz obudowy konwertera i po kilku sekundach zdjąć zworkę).

W tab. 7 zestawiono domyślne ustawienia Konwertera LAN/RS-232.

Parametr	Wartość
Adres IP urządzenia	192.168.2.1
Maska sieciowa	255.255.255.0
Adres bramy sieciowej	192.168.2.250
Nazwa użytkownika WWW	admin
Hasło użytkownika WWW	system
Numer portu TCP dla połączenia Telnet	23
Nazwa społeczności (community) SNMP	sms4
Nazwa (identyfikator) urządzenia	LAN-RS
Tryb pracy portu RS-232 (SMOD=)	0 (9600 8N1, SMS-4)
Typ czujników dołączonych do MPS-1 (SCFG=)	0 (pomiar napięcia na liniach L1L16)

Tab.	7.	Dom	vślne	(fabr	vczne)	ustawienia	urzadzenia
I uo.	· •	D0m	ysinc	Juor	ycanc)	usiamenta	ui ząuzeniu